Rako Engineering

Capacitor discharge worksheet

Parameters	Value	Unit]	
Capacitor Charged Voltage	180	V	1	
Capacitor Value	0.01	F	1	
Number of Capacitors in parallel	3	each	1	
Resistor Value	33000	Ohm		
Number of resistors in parallel	6	each)
			-	-
Avg current through one resistor	0.0027	A	1	
Peak current through one resistor*	0.0055	A	1	
Peak power dissipated through each resistor*	0.9818	W		
Average current through all resistors	0.0164	A		
Peak current through all resistors*	0.0327	A	1	
Peak power dissipated though all resistors*	5.8909	W		the
				~~
Time to discharge to 10V	311.667	s	=	5.194 minutes
Time to discharge to 0V	330.000	S	=	5.500 minutes

Note: * = Peak as in the beginning of power down procedure. Note: * = Peak would be the acutal current/power during operation

Rako Engineering

Capacitor discharge worksheet

Parameters	Value	Unit			
Capacitor Charged Voltage	180	V			
Capacitor Value	0.01	F			
Number of Capacitors in parallel	3	each			
Resistor Value	33000	Ohm			
Number of resistors in parallel	3	each			
Avg current through one resistor	0.0027	A			
Peak current through one resistor*	0.0055	A			
Peak power dissipated through each resistor*	0.9818	W			
Average current through all resistors	0.0082	А			
Peak current through all resistors*	0.0164	А			
Peak power dissipated though all resistors*	2.9455	W			
Time to discharge to 10V	623.333	S	=	10.389	minutes
Time to discharge to 0V	660.000	S		11.000	minutes

Note: * = Peak as in the beginning of power down procedure. Note: * = Peak would be the acutal current/power during operation

Rako Engineering

Actual Test data for discharging capacitors

ROUGH DRAWING BETTER DRAWING 120 VRMS == 170 VP-P 208 VRMS = +294 Vpp-, Bur BLACK RED 1 172 172 NEUTER -172 $\frac{208}{120} = 1.733 = \frac{294}{170}$ IF 120 = 4 Squarsson GRAPH 4(1.733) = 6.93 59 49125 on Graph -Yup - citeens out.