

^1 USER MANUAL

^2 PMAC DUAL-PORTED RAM

^3 8K x 16 bit Dual-Ported RAM

^4 3Ax-00PMAC-xUxx

^5 June 8, 2004

Single
21314
Source Machine Control
Lassen Street Chatsworth, CA 91311 // Tel. (
 Power // Flexibility // Ease of Use
818) 998-2095 Fax. (818) 998-7807 // www.deltatau.com

Copyright Information
© 2003 Delta Tau Data Systems, Inc. All rights reserved.
This document is furnished for the customers of Delta Tau Data Systems, Inc. Other uses are
unauthorized without written permission of Delta Tau Data Systems, Inc. Information contained
in this manual may be updated from time-to-time due to product improvements, etc., and may not
conform in every respect to former issues.

To report errors or inconsistencies, call or email:
Delta Tau Data Systems, Inc. Technical Support
Phone: (818) 717-5656
Fax: (818) 998-7807
Email: support@deltatau.com
Website: http://www.deltatau.com

Operating Conditions
All Delta Tau Data Systems, Inc. motion controller products, accessories, and amplifiers contain
static sensitive components that can be damaged by incorrect handling. When installing or
handling Delta Tau Data Systems, Inc. products, avoid contact with highly insulated materials.
Only qualified personnel should be allowed to handle this equipment.

In the case of industrial applications, we expect our products to be protected from hazardous or
conductive materials and/or environments that could cause harm to the controller by damaging
components or causing electrical shorts. When our products are used in an industrial
environment, install them into an industrial electrical cabinet or industrial PC to protect them
from excessive or corrosive moisture, abnormal ambient temperatures, and conductive materials.
If Delta Tau Data Systems, Inc. products are exposed to hazardous or conductive materials and/or
environments, we cannot guarantee their operation.

mailto:support@deltatau.com
http://www.deltatau.com/

PMAC Dual-Ported RAM User Manual

Table of Contents i

Table of Contents
DUAL-PORTED RAM COMMUNICATIONS..1

Uses of DPRAM..1
Setting up the PC Bus Dual-Ported RAM (Option 2)..1

Software Setup ..2
System Memory Map (Most Compatible)..3
Starting Address..3

Setting up the VME Dual-Ported RAM (Option 2V)..4
Starting Address..4

Using the Dual Ported RAM (PC and VME) ..6
DUAL-PORTED RAM AUTOMATIC FUNCTIONS...11

DPRAM Data Format..11
Control Panel Function..12

General Description ...12
Register Addresses..13
Control Panel Request Words...13
Bit Format of Request Words..13

Servo Fixed Data Buffer..14
General Description ...14
Register Map...15

Background Fixed Data Buffer ...17
General Description ...17
Register Map...17

Background Variable Data Read Buffer..21
General Description ...22
Enabling..22
Single User Mode Procedure..22
Multi-User Mode Procedure...22
Data Format ...23
Disabling ..23
Register Map...23

Background Variable Data Write Buffer...24
General Description ...24
Enabling..24
Procedure ...24
Data Format ...25
Disabling ..25
Register Map...25

DPRAM Data Gathering Buffer..25
DPRAM ASCII Communications ...27

General Description ...27
Read/Write Procedure ..27
Interrupts ..28
Register Map...29

Binary Rotary Program Buffers...29
General Description ...30
Register Map...31
Binary Command Structure ..31
Internal PMAC 48-Bit Command Format ..32

 PMAC Dual-Ported RAM User Manual

ii Table of Contents

PMAC Dual-Ported RAM User Manual

Dual-Ported RAM Communications 1

DUAL-PORTED RAM COMMUNICATIONS
PMAC’s Option 2 provides an 8K x 16 bit dual-ported RAM that allows PMAC and its host to share an
area of fast memory. For the PMAC PC and the PMAC Lite, Option 2 is a separate board that sits on the
PC bus and cables to PMAC. For the PMAC VME, Option 2(V) consists of ICs added to the main board
itself. Option 2 is not available for the PMAC STD. For all versions of the PMAC2, Option 2 consists of
ICs added to the main board itself. The dual-ported RAM can be used for extremely fast communication
of data and commands to and from PMAC.

Uses of DPRAM
The typical use in writing to PMAC is for a very fast repetitive downloading of position data and/or rotary
program information in real time. The typical use in reading from PMAC is getting very fast status
information repetitively. PMAC supports both automatic functions for the DPRAM communications, and
user-designated functions.

Data such as motor status, position, velocity, following error, etc. can be continuously updated and written
to DPRAM by PLC programs or automatically by PMAC. Without using DPRAM, this data must be
accessed by sending PMAC on-line commands, such as ?, P, V, and F, through the VME mailbox registers
or over the PC bus. This same data may be obtained much faster via the DPRAM without the time
required to send the command through the communications port and wait for the response.

For non-automatic uses, PMAC usually accesses the dual-ported RAM through M-variables that are
addressed to these locations. This can work for reading or writing. The M-variable formats likely to be
used are X:, Y: (for 1 to 16 bits), DP: (for 32-bit fixed point), and F: (32-bit floating point). For sending
data back to the host, PMAC's data gathering function can also be used, directed to the dual-ported RAM
rather than the regular RAM (I45 controls). See the Analysis Features section of the PMAC manual for
details.

Setting up the PC Bus Dual-Ported RAM (Option 2)
There is no hardware setup or connections for the Option 2 DPRAM on the PMAC2-PC or PMAC2-Lite.
It is factory installed on the PMAC2 itself. For the PMAC PC bus cards, the DPRAM card plugs into an
available PC-slot to the right side of your PMAC PC or Lite card. The PMAC and DPRAM card together
occupy 2 PC slots. The two short cables provided connect the DPRAM to the CPU on the PMAC. The
50-pin cable connects P3 of DPRAM to J2 of PMAC (piggy-back board) or J9 of PMAC Lite. The 10-pin
cable connects P4 of DPRAM to J4 of PMAC (piggy-back board) or J10 of PMAC Lite.

 PMAC Dual-Ported RAM User Manual

2 Dual-Ported RAM Communications

P4

P3

U
10

4.
19

 in
 (1

06
.4

 m
m

)

3.
88

 in
 (9

8.
5

M
M

)

7.50 in (190.5 mm)

PMAC-PC OPTION 2
DUAL-PORTED RAM INTERFACE BOARD

To install the board, connect the cables as previously stated with the boards removed from your computer.
Next, install both boards, plugging in PMAC first and then the DPRAM board in the slot next to it. Turn
on your computer and establish communication with PMAC using the PMAC Executive software. At the
time of this manual revision, the easiest method of configuring the Dual-Ported RAM is using the
Executive Program.

There are only two hardware configurations (set with jumper E1) for the DPRAM card. Jumper E1
controls whether the DPRAM uses 8 or 16-bit access. E1 should be removed for 8-bit access in a 16-bit
PC bus (AT) slot. Install E1 for 16-bit operation (faster data transfers). All other DPRAM configurations
are done entirely through software programming via PMAC.

Software Setup
The software setup is simply a matter of setting a few register values in PMAC through the normal bus
communications port, and saving these values to non-volatile memory. This should allow the host
computer to have direct access to this memory in an open area of its memory space. Once the setup has
been made successfully, the DPRAM registers can be accessed from the PC side with pointer variables.

The configuration of the DPRAM is done entirely through software. Configuring consists of selecting an
16K block (byte addressing) of unused memory space in your PC. This is not necessarily a trivial task.
Depending on the computer and other accessory cards you may have (such as network cards, graphic
cards, etc. that use conventional memory space and not I/O memory space), the available memory space
location may vary. Think of it as adding a standard memory card to the computer where an address
location must be selected in the memory map that no other device in the computer uses.

If you are unsure about the locations available for DPRAM to use, there is menu option Configure|PC
Dual-Ported RAM under the Configure menu in the PMAC Executive Program which can help find an
available block of memory space. Refer to the PMAC Executive Program Manual for details on how to do
this. In most cases, the available memory space will be found between locations $B0000 and $EC000.
Usually, a system memory map of the PC which is standard for most PCs and compatible is found below.

PMAC Dual-Ported RAM User Manual

Dual-Ported RAM Communications 3

System Memory Map (Most Compatible)
Decimal Hex Function

0 0000
 16K 04000

32K 08000
48K 0C000 Standard 640K RAM
64K 10000

⋅ ⋅ For DOS, Programs, etc.
⋅ ⋅
⋅ ⋅

624K 9C000
640K A0000

⋅ ⋅ Usually VGA/EGA Space
688K AC000
704K B0000

⋅ ⋅ Recommended memory space
⋅ ⋅ Monochrome may start at B0000

944K EC000
960K F0000

⋅ ⋅ System BIOS & ROM
1008K FC000

Starting Address
Once you have chosen a used block of memory space, you must now configure the DPRAM to start at that
address. To do this, you must write the segment value (eight highest order bits) of your chosen start
address into locations $786 and $787 of PMAC’s X memory (see I/O Memory Map section of PMAC’s
Users Manual). These are special memory locations in PMAC which tell PMAC where in PC memory to
locate the DPRAM. In addition, you also specify using the 20 or 24-bit DPRAM addressing mode. The
24-bit addressing mode locates the DPRAM above the 1 megabyte range (locations above $FFFFF). (If
using an 8086 or an 8088 microprocessor (IBM PC/XT), only use 20-bit addressing and it is limited to
configuring the DPRAM for locations $FC000 and under). In most cases, no matter which microprocessor
being used (AT, XT, or whatever), locating the DPRAM between $B0000 and $EC000 will be sufficient.

Note:

Most will simply use the Configure|PC Dual-Ported Ram window in the PMAC
Executive program to set the address for DPRAM. The following section explains
how to perform this setup without the Executive program.

The PMAC Executive program Configure|PC Dual-Ported RAM screen specifies
PC memory addresses in terms of memory segments. Each memory segment starts
16 addresses from the pervious segment, so the segment address is like the memory
address without the hex digit (i.e. memory address $D4000 is segment address
$D400).

Bits 0-3 (first four least significant bits) of PMAC location X:$787 as follows:
 Bit 0: DPRAM enable/disable (1=enable, 0=disable)
 Bit 1: 8K RAM (0=8K)
 Bit 2: 24-bit/20 bit addressing enable (1=24 bit, 0=20 bit)

 PMAC Dual-Ported RAM User Manual

4 Dual-Ported RAM Communications

Example:
To configure the DPRAM to start at $EC000 in PC memory. There is 8K of DPRAM and 24-bit
addressing is needed. To configure and enable the DPRAM, either use the PMAC Executive program’s
dual-port RAM configuration feature or send the following commands directly to PMAC.
WX:$786,$0000E,$000C5 ;configure DPRAM for $EC000
save ;save configuration to EAROM
$$$;re-initialize the card

The last hex digit 5 comes from the above binary number 0101 = $5

Unused
24-bit Addr. 8K RAM Enabled

To disable the DPRAM, you could use the PMAC Executive program’s dual-port RAM configuration
feature or send the following commands directly to PMAC.
WX:$786,$0000E,$000C4 ;disable DPRAM
save ;save configuration to EAROM
$$$;re-initialize the card

Default values
in PMAC
PROM Reset with Re-initialize

(E51 ON
or $$$***)

Non-volatile
Storage Registers

in PMAC
EEPROM

SAVE

Normal
Reset

User Interface
Registers in
PMAC RAM

(VME) RHX$783,10

(PC) RHX$786,2

WX$783, ... (VME)

WX$786, ... (PC)

Any Reset
Active Interface

Control Registers

Setup
Computer

 Normal Setup Procedure
1. Send values from setup computer
 to PMAC User interface registers
2. SAVE values to PMAC EEPROM
3. Reset PMAC to copy values
 into active control registers

VME and/or DPRAM Address Setup

PMAC

Setting up the VME Dual-Ported RAM (Option 2V)
There is no hardware setup or connections for the Option 2V DPRAM on the PMAC VME or PMAC2-
VME. It is factory installed on the PMAC board itself.

Starting Address
Before you can communicate with PMAC VME through the DPRAM, you must setup its starting address.
Initial communications to the VME for setup of the address of the VME mailbox registers is done over the
serial port. The setup of the DPRAM address can be done either with or after the mailbox setup (see
Writing a Host Communications Program in the PMAC User Manual).

PMAC Dual-Ported RAM User Manual

Dual-Ported RAM Communications 5

Before choosing the DPRAM starting address, determine what memory space is available in the VME
system (so that PMAC’s DPRAM does not interfere with existing RAM or other devices on the VME bus).
Just like setting up the base address of PMAC VME, the starting address of DPRAM is done through
software, but in a somewhat different manner. The best way to describe how to set up DPRAM is to give
an example.

Note:

Most users will simply use the Configure|VME Communications window in the
PMAC Executive program to set the address for DPRAM. The following section
explains how to perform this setup without the Executive program.

Example:
Suppose a starting address of $1FC000 was selected for the DPRAM. Just as we did for the base address
of PMAC, it is best to rewrite this address in binary and label the address bits, starting with A0 as the
rightmost bit:

Address Bit A31 A24 A23 A16 A15 A8 A7 A0
Binary 0000 0000 0001 1111 1100 0000 0000 0000
Hex 00 1F C0 00

Clearly, we have a value of $00 for address bits A31 - A24, $1F for address bits A23 - A16, $C0 for bits
A15 - A8 and $00 for bits A7 - A0. To tell PMAC where we want DPRAM to begin, we need to break up
this starting address into two parts:
1. The first part will represent the value address bits A23 through A20. This value will only be written

to PMAC once during the setup process and saved.
2. The second part will represent the value address bits A19 through A14. This value will need to be

written to PMAC each time it is powered up or reset.
If using 32-bit addressing, address bits A31 through A24 for the dual-ported RAM are determined by
PMAC’s memory location X:$0785, which is also used for the same address bits of the base address of the
mailbox registers.

First we have to write the value of address bits A23 through A20 into bits 7 through 4 (high order nibble)
of PMAC's memory location X:$078A, i.e. the left hex digit (most significant bits) will be the value of
address bits A23 - A20, and the other digit (right digit & least significant bits) will always be $0. In this
example, the value for address bits A23 - A20 would be $1, therefore we would write a value of $10 into
location X:$078A.

Now we have to determine the value of address bits A19 through A14. Every time PMAC is powered up
or reset (either with the hardware reset line or use of the $$$ command) we will need to write this value
into PMAC’s base address + $121 (remember, from our previous examples, PMAC’s base address is
$7FA000).

In this example, constructing a 6-bit hex number from bits A19 - A14 gives us a value of $3F:

Address Bits A19 A18 A17 A16 A15 A14
Binary
Hex

Therefore, we write $3F from the VME host computer (master) into VME bus location $7FA121 after
PMAC is powered up or reset.

 PMAC Dual-Ported RAM User Manual

6 Dual-Ported RAM Communications

Note:

This dynamic addressing scheme provides the capability for addressing up to 1M
byte of DPRAM in 16K byte blocks, by changing the value of base + $121 on the
fly. However, PMAC VME currently utilizes only a single 16 Kbyte block (8K x
16), so the base + $121 register only has to be written to once every time PMAC is
powered up or reset.

At this point, the starting address of DPRAM is fully specified. However, we need to check two more
register locations in PMAC’s memory for having appropriate values. Location X:$078B must have a value
of $E0 to enable the DPRAM chip installed on the PMAC VME and we must modify the value in location
X:$078C (the address width register) by adding $80 to the existing value. For this example, our PMAC
register values would be:

PMAC Address Value
X:$0783 $39
X:$0784 $04
X:$0785 $00
X:$0786 $7F
X:$0787 $A0
X:$0788 $02
X:$0789 $A1
X:$078A $10
X:$078B $E0
X:$078C $90

The shaded registers above contain the values we changed (from example 2.0) to enable DPRAM. A
simple write command followed by a SAVE command to PMAC will put these values into their
appropriate registers and make them permanent:
WX$0783,$39,$4,$0,$7F,$A0,$02,$A1,$10,$E0,$90
SAVE

Remember that these values must be saved with the SAVE command and then the card reset (with the $$$
command, the INIT/ input line pulled low, or power cycled) before these new values will take effect.
After this, writing $3F to $7FA121 (base + $121) will allow us to start using dual ported RAM.

Using the Dual Ported RAM (PC and VME)
The mapping of memory addresses between the host computer on one side, and PMAC's address space on
the other side, is quite simple. Using this memory is a matter of matching the addresses on both sides. To
PMAC, DPRAM simply appears as extra memory in the range $D000 to $DFFF, which can be thought of
as 4K of double (48-bit) words or 8K of single (24-bit) words, in both X and Y memory (remember, X and
Y memory in PMAC are 24-bit locations.).

PMAC Dual-Ported RAM User Manual

Dual-Ported RAM Communications 7

Note:

DPRAM only occupies the low 16 bits (0-15) of each 24-bit word in PMAC.

PMAC memory locations $D000 to $D1FF are reserved for fixed uses. The range of $D200 to $DFFF is
open for general-purpose use. From the PMAC side, locations in DPRAM are typically accessed using
M-variables. An M-variable is defined to each word to be used (such as M120->X:$D200,0,16,S),
then these M-variables are used in programs. They can either be written to (e.g. M120=P1+P5) or read
from (e.g., X(M120) or P1=M120).

To the host, DPRAM appears as 8K x 16-bit words of memory. Since most computers address by byte,
this requires 16K of address space, or 14 bits (214 = 16K) on the host bus. Consecutive 16-bit locations of
DPRAM are located at even addresses. That is, address bit A0 (the least significant bit of your DPRAM
address) should always be 0. Typically, these DPRAM locations are accessed through host word read and
word write commands.

When a location in DPRAM is accessed, either reading or writing, address bit A1 selects whether it is
reading or writing to PMAC’s Y or X memory. If address bit A1 = 0, you are selecting the equivalent of
PMAC’s Y memory. Conversely, if address bit A1 = 1, selecting PMAC’s X memory. The following
table shows the DPRAM addresses and the corresponding host address from our previous example:

 PMAC Dual-Ported RAM User Manual

8 Dual-Ported RAM Communications

PMAC Address Host Address
Y:$D000 $1FC000
X:$D000 $1FC002
Y:$D001 $1FC004
X:$D001 $1FC006
Y:$D200 $1FC800
X:$D200 $1FC802
.....
.....

.....

.....
Y:$DFFF $1FFFFC
X:$DFFF $1FFFFE

The following two equations can be helpful to help calculate both PMAC and host addresses for DPRAM:
Host address = Host start address + 4 x (PMAC address - $D000) + offset

where: offset = 0 for accessing Y memory, and offset = 2 for accessing X memory. In our example, Host
start address = $1FC000. In converting the other way, we have:

PMAC address = 0.25 x (Host address - Host start address) + $D000
Host DPRAM address bits A2 through A13 select which PMAC word is to be accessed. The value of
these bits equals the PMAC equivalent address minus $D000.

Read/write Example:
Suppose the DPRAM was configured to begin at host location $EC000 and you write to PMAC
WY$D000, $1234
WX$D000, $5678

Host

Writing to the DPRAM on the host side and reading it through PMAC is just as easy. The alignment of the
numbers work the same way as illustrated above.

The host application program and the PMAC motion control and/or PLC programs may be written to allow
a wide variety of control and data transfer capabilities. While certain DPRAM addresses are reserved as
mentioned above, the host may set certain addresses to trigger an operation in the PMAC, the PMAC may
set certain addresses to trigger an operation in the host, etc.

Programming Examples:
Example #1: Suppose a host program is written in C to read motor #1’s actual position. Use the DPRAM
automatic features to place this data in DPRAM or use a PMAC PLC program. To use a PLC program,
define two M-variables and a one line PLC program which constantly updates a location in DPRAM. The
C-program can then read this value, which is a 32-bit integer. In PMAC, enter the following M-variable
definitions and PLC program.

PMAC Dual-Ported RAM User Manual

Dual-Ported RAM Communications 9

M130->D:$28 ;motor #1 actual position
M131->DP:$D000 ;point to a location in DPRAM
OPEN PLC 1 CLEAR
M131=M130/(I108*32) ;update motor position (in counts) in DPRAM
CLOSE
I5=2 ; allow PLC 1 to be enabled
ENABLE PLC 1 ; “turn on” PLC 1

Now, read the location corresponding to M131 ($D000 in PMAC's memory) in PC memory and extract
this position information so that the C program can use it. The corresponding address in PC memory can
easily be determined by talking the address location in PMAC’s memory minus the starting address
(always $D000), multiply by 4 (because the X and Y words for each location in PMAC’s DPRAM space
is equivalent to four bytes or locations of PC memory) and add it to the PC memory starting address
selected for the DPRAM.
PC Location = ((PMAC Mem. Location (hex)- $D000) × 4) + (PC Mem Starting Address selected for DPRAM)
Assume we configured DPRAM to start at PC address $D4000. We want the equivalent PC address
location for PMAC location $D200. This would be:
Hex: ($D200 -$D000) × 4 + $D4000 = $D4800
Decimal: (53760 - 53248)× 4 + 868352 = 870400
Our C code now only has to PEEK location $D4800 and $D4802 (since we need to get four bytes to get a
32 bit word) to obtain motor #1’s current position. The C code subroutine may look like this.
long get_motor_position (){
 int hi_word;
 unsigned lo_word;
 lo_word = peek (0xD400, 0x0800);
 hi_word = peek (0xD400, 0x0802);
 return (hi_word *65536 +lo_word);

Example #2: To calculate positions for three axes in a custom C program and have PMAC move to these
positions. Assign three M-variables to point to three DPRAM locations, write position values to these
locations with the C program, and have a PMAC motion program use these variables in its move
statements. In the sample code below, a flag bit has been used to signal the C program when the data has
been taken by PMAC so the next move locations can be loaded.
M101->DP:$D201 ; used for motor x’s commanded position
M102->DP:$D202 ; used for motor x’s commanded position
M103->DP:$D100 ; used for motor x’s commanded position
M100->DP:$D200,0 ; go flag to stop motion program
M104->DP:$D200,1 ; flag to stop C program when positions have
 ; been received
OPEN PROG 1 CLEAR
TA10
WHILE(M100=1) ;keep looking while go flag is 1
 X(M101) Y(M102) Z(M103) ;move x,y,z to new positions
ENDWHILE
CLOSE

The C program calculates the positions, and would send them to PMAC via a subroutine like this:
void update_positions (longx, long y, long z, int stop_program)
{
 static long far *x, *y, *z;
 x = MK_FP (0xD400, 0x0804);
 y = MK_FP (0xD400, 0x0808);
 z = MK_FP (0xD400, 0x080C);

 PMAC Dual-Ported RAM User Manual

10 Dual-Ported RAM Communications

 while (peek (0xD400, 0x0801) == 1); /* wait until position received */
 *x = X;
 *y = Y;
 *z = Z;
 poke (0xD400, 0x0801,1); /*send position flag
}

PMAC Dual-Ported RAM User Manual

Dual-Ported RAM Automatic Functions 11

DUAL-PORTED RAM AUTOMATIC FUNCTIONS
PMAC provides many facilities for using the dual-ported RAM (DPRAM) to pass information back and
forth between the host computer and PMAC. These facilities are comprised of the following functions:
• DPRAM Control Panel Function (Host to PMAC)
• DPRAM Servo Data Reporting Function (PMAC to Host)
• DPRAM Background Fixed Data Reporting Function (PMAC to Host)
• DPRAM Background Variable Data Reporting Function (PMAC to Host)
• DPRAM ASCII Communications Buffer (Bi-directional)
• DPRAM Binary Rotary Program Buffer (Host to PMAC)
• DPRAM Data Gathering Buffer (PMAC to Host -- already existing)
• DPRAM <CONTROL-W> ASCII Command Function (Host to PMAC -- superseded by DPRAM

ASCII Communications)
In addition to these automatic functions, the user is free to access otherwise unused registers in the
DPRAM through the use of M-variables on the PMAC side, and through pointer variables on the host side,
for sending data either way between the host and PMAC.

Each of the automatic functions is described in detail below.

Note:

In listing memory locations, both the host memory address and the PMAC memory
address will be given. The host address is given as an offset from the base address
of the DPRAM in the host memory space; it is expressed in standard C-language
hexadecimal notation (e.g. 0x1F80). The PMAC address is given in parentheses as
an absolute location in PMAC memory; it is expressed in the standard PMAC
hexadecimal notation (e.g. X:$D008)

DPRAM Data Format
Long-format data is stored in the DPRAM in 32-bit sign-extended form. That is, each short (24-bit) from
PMAC is sign-extended and stored in 32 bits of DPRAM. The most significant byte is all ones or all
zeros, matching bit 23. Each long (48-bit) word is treated as 2 24-bit words, with each short word sign-
extended to 32 bits. The host computer must re-assemble these words into a single value. The data
appears in the DPRAM in Intel format: the less significant bytes and words appear in the lower-numbered
addresses.

To reassemble a long fixed-point word in the host, take the less significant 32-bit word, and mask out the
sign extension (top eight bits). In C, this operation could be done with a bit-by- bit AND: (LSW and
16777215). Treat this result as an unsigned integer. Next, take the more significant word and multiply it
by 16,777,216. Finally, add the two intermediate results together.

To reassemble a long floating-point word in the host, treat the less significant word the same as for the
fixed-point case above. Take the bottom 12 bits of the more significant word (MSW and 4095), multiply
by 16,777,216 and add to the masked less significant word. This forms the mantissa of the floating-point
value. Now take the next 12 bits (MSW and 16773120) of the more significant word. This is the exponent
to the power of two, which can be combined with the mantissa to form the complete value.

 PMAC Dual-Ported RAM User Manual

12 Dual-Ported RAM Automatic Functions

DUAL-PORTED RAM DATA GATHERING FORMATS

Byte 2 Byte 1 Byte 0

Byte 2
Byte 1

Byte 0

Byte 2 Byte 1 Byte 0
Byte 5 Byte 4

Byte 2
Byte 1

Byte 0

Byte 4
Byte 5

11111111

S S S S S S S S

S

S

1S

S2

1S
S2

078151623

078151623

BIT #

BIT #

DPRAM
BYTE
NO.

(RELATIVE)

0
1
2
3

24 BITS
PMAC WORD:

48 BITS
PMAC Y: WORD
PMAC X: WORD

DPRAM
BYTE
NO.

(RELATIVE)

0
1
2
3
4
5
6
7

(SIGN EXTENSION)

(SIGN EXTENSION)

(SIGN EXTENSION)

S = Sign bit

1S = First word sign bit
= Second word sign bit
= Exponent for floating point

S2

Byte 3

Byte 3

S2S2S2S2S2S2S2S2

S S S S S S S S

Control Panel Function
PMAC provides the capability to create the software equivalent of a hardware control panel in the
DPRAM. By setting and clearing individual bits in the DPRAM, the host computer can duplicate all of the
functions available from external switches through the JPAN connector. Also, by writing a 16-bit value,
the host can control the feedrate override (% value) just as a real potentiometer would.

The DPRAM control panel functions are enabled if I2 is set to 3. They are disabled if I3 is set to other
values.

General Description
The host loads command request bits for motors and coordinate systems into registers 0x0004 (Y:$D001),
0x0008 (Y:$D002), etc., then triggers the action by setting the appropriate enable bits of register 0x0000
(Y:$D000). When PMAC processes the request, it clears all of the bits of 0x0000 (Y:$D000). The
DPRAM is now ready for the next set of requests.

The host loads the desired "Feedrate Override" (time-base) values for the coordinate systems it wishes to
change into registers 0x0006 (X:$D001), 0x000A (X:$D002), etc., then triggers the action by setting the
appropriate enable bits of register 0x0002 (X:$D000). The register holds values from 0 to 32,767, in units
of 1/32,768 msec. The value represents the "elapsed time" PMAC uses in its trajectory update equations
each servo cycle. If it matches the true time, the trajectories will go at the programmed speeds. If it is
greater than the true time, trajectories will go faster; if it is less, they will go slower. This value
corresponds to values of 0 to 8,388,352 in units of I10 (1/8,388,608 msec). At the default I10 value of
3,713,707, this corresponds to override (%) values from 0 to 225.87; for real-time execution (%100) a
value of 14,507 should be used.

PMAC copies these values, multiplied by 256, into the command override register for the appropriate
coordinate system (e.g. X:$0806 for C.S.1). If Ix93 -- Time Base Source Address -- for the coordinate
system contains the address of this register, then the value is used as the override for the coordinate
system. PMAC does not clear the enable bits in register 0x0002 (X:$D000); as long as the enable bit for a
coordinate system stays set, PMAC will use the override values provided by the host.

PMAC Dual-Ported RAM User Manual

Dual-Ported RAM Automatic Functions 13

Register Addresses
Address Description
0x0000

(Y:$D000)
Control Panel Motor/Coordinate System Enable Mask
(Set bit to enable; PMAC clears on taking action)

 Bit 0: Motor/Coordinate System # 1
 Bit 1: Motor/Coordinate System # 2
 Bit 2: Motor/Coordinate System # 3
 Bit 3: Motor/Coordinate System # 4
 Bit 4: Motor/Coordinate System # 5
 Bit 5: Motor/Coordinate System # 6
 Bit 6: Motor/Coordinate System # 7
 Bit 7: Motor/Coordinate System # 8
 Bits 8-15: Not Used

0x0002
(X:$D000)

Coordinate System Feed Pot Override Enable Mask
(Set bit to enable, clear bit to disable)

 Bit 0: Coordinate System # 1
 Bit 1: Coordinate System # 2
 Bit 2: Coordinate System # 3
 Bit 3: Coordinate System # 4
 Bit 4: Coordinate System # 5
 Bit 5: Coordinate System # 6
 Bit 6: Coordinate System # 7
 Bit 7: Coordinate System # 8
 Bits 8-15: Not Used

Control Panel Request Words
Motor/C.S. # 1 2 3 4 5 6 7 8
Host Address 0x0004 0x0008 0x000C 0x0010 0x0014 0x0018 0x001C 0x0020

PMAC Address Y:$D001 Y:$D002 Y:$D003 Y:$D004 Y:$D005 Y:$D006 Y:$D007 Y:$D008

Bit Format of Request Words
Bit Request (1 = action requested; 0 = no action requested)
0-7 (Reserved for Delta Tau Future Use)
8 Jog-Minus (Motor Only) *
9 Jog-Plus (Motor Only) *

10 Pre-Jog (Motor Only)
11 Start (RUN) (Coord. Sys. Only)
12 Step (STEP/QUIT) (Coord. Sys. Only)
13 Stop (ABORT) (Coord. Sys. Only)
14 Home (Motor Only)
15 Feed Hold (HOLD) (Coord. Sys. Only)

* When both Jog-Minus and Jog-Plus are set, motor will stop

Coord. Sys. # 1 2 3 4 5 6 7 8
Host Address 0x0006 0x000A 0x000E 0x0012 0x0016 0x001A 0x001E 0x0022

PMAC Address X:$D001 X:$D002 X:$D003 X:$D004 X:$D005 X:$D006 X:$D007 X:$D008

 PMAC Dual-Ported RAM User Manual

14 Dual-Ported RAM Automatic Functions

Servo Fixed Data Buffer
PMAC can provide key motor servo data to the DPRAM where it can be accessed easily and quickly by
the host computer. PMAC copies data from key motor registers into fixed registers in the DPRAM. The
copying is attempted every I19 servo cycles, and is done for motors 1 through n, where n is determined by
variable I59. Setting I48 to 1 and issuing the GATHER command enables this feature.

General Description
In operation, every I19 servo cycles, PMAC tests to see if the Host-Busy flag at 0x0024 (Y:$D009) Bit 0 is
set (=1). If it is, PMAC skips this update of the buffer. If the flag is clear (=0), PMAC first sets the
PMAC-Busy flag at 0x0026 (X:$D009) Bit 15 to 1, then it updates the buffer with the information from
the specified motors (#1 to #{I59}), then updates the servo time at 0x0026 (X:$D009) Bits 0-14, and
finally clears the PMAC-Busy flag by setting 0x0026 (X:$D009) Bit 15 to 0.

When the host wishes to read the buffer it must make sure that the PMAC-Busy flag is clear. First set the
Host-Busy flag at 0x0024 (Y:$D009) Bit 0 to 1 (So PMAC stops updating and doesn't write as the host
reads). Then poll the PMAC-Busy flag. If the host finds that this flag is set, it may test the flag some
more times – the number of tests should always be limited – or it can decide to skip this cycle
immediately. The host then reads the information it desires, and finally clears the Host-Busy flag to permit
PMAC to start the next update.

The data format in the DPRAM is the same as for the Data Gathering to the Dual Port Format. 24-bit
values are sign-extended to 32-bits. 48-bit values are treated as 2 24-bit values: each half is sign-extended
to 32 bits, for a total of 64 bits. The data is provided in Intel format, with the low address containing the
least significant word.

I19 determines the rate at which this buffer is updated by the PMAC in units of servo cycles. I59
determines the highest motor number that will be updated. For example, I59 = 1 means only Motor 1
information will be updated; I59 = 5 means information will be updated for Motors 1, 2, 3, 4, and 5. I59 =
0 means there will be no update of buffers.

On-line commands GATHER and ENDGATHER enable and disable the Servo data reporting buffer, but do
not affect the Background data reporting buffer. If the GATHER command is issued with I48=0, the data
gathering function will start instead of this servo data reporting function. This data gathering function
could be storing data either in PMAC's main memory, or the DPRAM, depending on the setting of I45.

It is possible to execute both the servo data reporting function and the data gathering function
simultaneously. After setting I48 to 1, the first GATHER command activates the servo data reporting
function described here. The second GATHER command also activates the data gathering function that
uses I20 to I44 to determine what data is to be gathered. The ENDGATHER command stops the function
started by the most recent GATHER command. If both functions are running, two ENDGATHER commands
must be issued to stop them both.

To enable this function:
1. Set I19 = update period (in servo cycles).
2. Set I59 = highest motor number (1 - 8).
3. Set I48 = 1.
4. Issue GATHER command.
To disable this function:
1. Issue ENDGATHER command, or
2. Set I19 = 0, or
3. Set I48 = 0, or
4. Set I59 = 0 (this will also disable the Background Fixed Data Buffer).

PMAC Dual-Ported RAM User Manual

Dual-Ported RAM Automatic Functions 15

Register Map
Global Registers for Servo Fixed Data Reporting Buffer

Address Description
(0x0024)
Y:$D009

Host Status to PMAC:
Bit 0 = 1 is Host-Busy, reading buffer; = 0 is not busy
Bits 1-15 (reserved for future use)

(0x0026)
X:$D009

PMAC Status to Host:
Bits 0-14 Servo Timer
Bit 15 = 1 is PMAC-Busy updating buffer; = 0 is not busy

(0x0028,A)
$D00A

Global Status Bits (from Y:$0003)
Low 24 Bits (First word returned on? command)

(0x002C,E)
$D00B

Global Status Bits (from X:$0003)
Low 24 bits (Second word returned on? command)

(0x0030-46)
$D00C-11

Spare Global Var.

Motor-Specific Registers for Servo Fixed Data Reporting Buffer:

Motor Commanded Position (64 bits; 1/(Ix08*32) counts)
Motor # 1 2 3 4 5 6 7 8
Host Address 0x0048-

0x004E
0x0084-
0x008A

0x00C0-
0x00C6

0x00FC-
0x0102

0x0138-
0x013E

0x0174-
0x017A

0x01B0-
0x01B6

0x01EC-
0x01F2

PMAC Address $D012-
$D013

$D021-
$D022

$D030-
$D031

$D03F-
$D040

$D04E-
$D04F

$D05D-
$D05E

$D06C-
$D06D

$D07B-
$D07C

Source Address $0028 $0064 $00A0 $00DC $0118 $0154 $0190 $01CC

Motor Actual Position (64 bits; 1/(Ix08*32) counts)
Motor # 1 2 3 4 5 6 7 8
Host Address 0x0050-

0x0056
0x008C-
0x0092

0x00C8-
0x00CE

0x0104-
0x010A

0x0140-
0x0146

0x017C-
0x0182

0x01B8-
0x01BE

0x01F4-
0x01FA

PMAC Address $D014-
$D015

$D023-
$D024

$D032-
$D033

$D041-
$D042

$D050-
$D051

$D05F-
$D060

$D06E-
$D06F

$D07D-
$D07E

Source Address $002B $0067 $00A3 $00DF $011B $0157 $0193 $01CF

Motor Master Position (64 bits; 1/(Ix07*32) counts of the master; 1/(Ix08*32) motor counts)
Motor # 1 2 3 4 5 6 7 8
Host Address 0x0058-

0x005E
0x0094-
0x009A

0x00D0-
0x00D6

0x010C-
0x0112

0x0148-
0x014E

0x0184-
0x018A

0x01C0-
0x01C6

0x01FC-
0x0202

PMAC Address $D016-
$D017

$D025-
$D026

$D034-
$D035

$D043-
$D044

$D052-
$D053

$D061-
$D062

$D070-
$D071

$D07F-
$D080

Source Address. $002D $0069 $00A5 $00E1 $011D $0159 $0195 $01D1

Motor Compensation Position (64 bits; 1/(Ix08*32) counts)
Motor # 1 2 3 4 5 6 7 8
Host Address 0x0060-

0x0066
0x009C-
0x00A2

0x00D8-
0x00DE

0x0114-
0x011A

0x0150-
0x0156

0x018C-
0x0192

0x01C8-
0x01CE

0x0204-
0x020A

PMAC Address $D018-
$D019

$D027-
$D028

$D036-
$D037

$D045-
$D046

$D054-
$D055

$D063-
$D064

$D072-
$D073

$D081-
$D082

Source Address. $0046 $0082 $00BE $00FA $0136 $0172 $01AE $01EA

 PMAC Dual-Ported RAM User Manual

16 Dual-Ported RAM Automatic Functions

Motor Previous DAC (32 bits; 1/256 DAC bits)
Motor # 1 2 3 4 5 6 7 8
Host Address 0x0068-

0x006A
0x00A4-
0x00A6

0x00E0-
0x00E2

0x011C-
0x011E

0x0158-
0x015A

0x0194-
0x0196

0x01D0-
0x01D2

0x020C-
0x020E

PMAC Address $D01A $D029 $D038 $D047 $D056 $D065 $D074 $D083
Source Address X:$003A X:$0076 X:$00B2 X:$00EE X:$012A X:$0166 X:$01A2 X:$01DE

Motor Servo Status (32 bits; low 24 bits used) 1st word returned on ? command
Motor/C.S. # 1 2 3 4 5 6 7 8

Host Address 0x006C-
0x006E

0x00A8-
0x00AA

0x00E4-
0x00E6

0x0120-
0x0122

0x015C-
0x015E

0x0198-
0x019A

0x01D4-
0x01D6

0x0210-
0x0212

PMAC Address $D01B $D02A $D039 $D048 $D057 $D066 $D075 $D084
Source Address X:$003D X:$0079 X:$00B5 X:$00F1 X:$012D X:$0169 X:$01A5 X:$01E1

Motor Actual Velocity (1/(Ix09*32) counts per servo cycle)
Motor # 1 2 3 4 5 6 7 8
Host Address 0x0070

0x0072
0x00AC-
0x00AE

0x00E8-
0x00EA

0x0124-
0x0126

0x0160-
0x0162

0x019C-
0x019E

0x01D8-
0x01DA

0x0214-
0x0216

PMAC Address $D01C $D02B $D03A $D049 $D058 $D067 $D076 $D085
Source Address X:$0033 X:$006F X:$00AB X:$00E7 X:$0123 X:$015F X:$019B X:$01D7

Time Left in Move Segment (2*msec)
Motor # 1 2 3 4 5 6 7 8
Host Address 0x0074-

0x0076
0x00B0-
0x00B2

0x00EC-
0x00EE

0x0128-
0x012A

0x0164-
0x0166

0x01A0-
0x01A2

0x01DC
0x01DE

0x0218-
0x021A

PMAC Address $D01D $D02C $D03B $D04A $D059 $D068 $D077 $D086
Source Address X:$0020 X:$005C X:$0098 X:$00D4 X:$0110 X:$014C X:$0188 X:$01C4

Handwheel Pointer
Motor # 1 2 3 4 5 6 7 8
Host Address 0x0078-

0x007A
0x00B4-
0x00B6

0x00F0-
0x00F2

0x012C-
0x012E

0x0168-
0x016A

0x01A4-
0x01A6

0x01E0
0x01E2

0x021C-
0x021E

PMAC Address $D01E $D02D $D03C $D04B $D05A $D069 $D078 $D087
Source Address X:$0029 X:$0065 X:$00A1 X:$00DD X:$0119 X:$0155 X:$0191 X:$01CD

Spare Registers
Motor # 1 2 3 4 5 6 7 8
Host Address 0x007C-

0x0082
0x00B8-
0x00BE

0x00F4-
0x00FA

0x0130-
0x0136

0x016C-
0x0172

0x01A8-
0x01AE

0x01E4-
0x01EA

0x0220-
0x0226

PMAC Address $D01F-
$D020

$D02E-
$D02F

$D03D-
$D03E

$D04C-
$D04D

$D05B-
$D05C

$D06A-
$D06B

$D079-
$D07A

$D088-
$D089

PMAC Dual-Ported RAM User Manual

Dual-Ported RAM Automatic Functions 17

Background Fixed Data Buffer
PMAC can provide information of interest of the host computer through the DPRAM as a background
task. This feature is enabled if I49=1. If this feature is enabled, each time PMAC executes its
housekeeping tasks in background, which it does between each scan of each PLC program, it will update
the buffer in DPRAM if the host has read the previous contents of the buffer. The information in this
buffer is data in PMAC that is updated less often than once per servo cycle.

General Description
When this feature is enabled, each time PMAC executes it housekeeping routines, it tests to see if the
Data-Ready flag at 0x0228 (Y:$D08A) Bit 0 is set (= 1). If it is, PMAC assumes the host has not finished
reading the last update, so it skips this update of the buffer. If the flag is clear (=0), meaning that the host
has finished reading the previous update, it will copy new data into the buffer. The information copied is
for motors and coordinate systems numbered from 1 to the value of I59. After updating the buffer it sets
the Data-Ready flag to 1, and sets register 0x022A (X:$D08A) equal to the servo timer to mark the time of
the report.

The host computer should check the Data-Ready flag before attempting to read the information in the
buffer. If the flag is not set, the host can either check several more times waiting for it to be set by PMAC,
or immediately go on to other tasks. If the flag is set, the host can read the information it desires from the
buffer. It must clear the Data-Ready flag after reading the information in order to permit PMAC to write
another set of data into the buffer.
To Enable:
1. Set I59 = highest motor/C.S. (1 - 8), and
2. Set I49 = 1
To Disable:
1. Set I49 = 0, or
2. Set I59 = 0 (This will also disable the Servo Data Buffer)

Register Map
Global Registers for Background Fixed Data Buffer

Address Description
0x0228

(Y:$D08A)
Buffer Status to Host and PMAC
Bit 0: Data-Ready Flag
 =1 means PMAC done updating buffer
 =0 means host ready for another update from PMAC
Bits 1-15: (Reserved for future use)

0x022A
(X:$D08A)

PMAC Servo Timer: Updated at Data Ready Time (from X:$0000)

0x022C,E
($D08B)

Control Panel Hardware Port (from Y:$FFC0)

0x0230,2
($D08C)

Thumbwheel Hardware Port (from Y:$FFC1)

0x0234,6
($D08D)

Machine I/O (OPTO) Hardware Port (from Y:$FFC2)

0x0238-4A
($D08E-92)

Spare Global Variable.

 PMAC Dual-Ported RAM User Manual

18 Dual-Ported RAM Automatic Functions

Motor/Coordinate System Specific Registers for Background Fixed Data Buffer

Motor Target Position (64 bits; 1/(Ix08*32) counts)
Motor/C.S. # 1 2 3 4 5 6 7 8
Host Address 0x024C-

0x0252
0x02C8-
0x02CE

0x0344-
0x034A

0x03C0-
0x03C6

0x043C-
0x0442

0x04B8-
0x04BE

0x0534-
0x053A

0x05B0-
0x05B6

PMAC Address $D093-
$D094

$D0B2-
$D0B3

$D0D1-
$D0D2

$D0F0-
$D0F1

$D10F-
$D110

$D12E-
$D12F

$D14D-
$D14E

$D16C-
$D16D

Source Address $080B $08CB $098B $0A4B $0B0B $0BCB $0C8B $0D4B

Motor Position Bias (64 bits; 1/(Ix08*32) counts)
Motor/C.S. # 1 2 3 4 5 6 7 8
Host Address 0x0254-

0x025A
0x02D0-
0x02D6

0x034C-
0x0352

0x03C8-
0x03CE

0x0444-
0x044A

0x04C0-
0x04C6

0x053C-
0x0542

0x05B8-
0x05BE

PMAC Address $D095-
$D096

$D0B4-
$D0B5

$D0D3-
$D0D4

$D0F2-
$D0F3

$D111-
$D112

$D130-
$D131

$D14F-
$D150

$D16E-
$D16F

Source Address $0813 $08D3 $0993 $0A53 $0B13 $0BD3 $0C93 $0D53

Motor Status Word (32 bits; low 24 bits used) 2nd word returned on ? command
Motor/C.S. # 1 2 3 4 5 6 7 8
Host Address 0x025C-

0x025E
0x02D8-
0x02DA

0x0354-
0x0356

0x03D0-
0x03D2

0x044C-
0x044E

0x04C8-
0x04CA

0x0544-
0x0546

0x05C0
0x05C2

PMAC Address $D097 $D0B6 $D0D5 $D0F4 $D113 $D132 $D151 $D170
Source Address Y:$0814 Y:$08D4 Y:$0994 Y:$0A54 Y:$0B14 Y:$0BD4 Y:$0C94 Y:$0D54

Coordinate System Status/Definition Word (low 32 bits contains Motor Definition Word;
high 32 bits contain first word returned on ?? command)

Motor/C.S. # 1 2 3 4 5 6 7 8
Host Address 0x0260-

0x0266
0x02DC-
0x02E2

0x0358-
0x035E

0x03D4-
0x03DA

0x0450-
0x0456

0x04CC-
0x04D2

0x0548-
0x054E

0x05C4-
0x05CA

PMAC Address $D098-
$D099

$D0B7-
$D0B8

$D0D6-
$D0D7

$D0F5-
$D0F6

$D114-
$D115

$D133-
$D134

$D152-
$D153

$D171-
$D172

Source Address $0818 $08D8 $0998 $0A58 $0B18 $0BD8 $0C98 $0D58

Coordinate System A-Axis Target Position (User Units) (* Note 1)
Motor/C.S. # 1 2 3 4 5 6 7 8
Host Address 0x0268-

0x026E
0x02E4-
0x02EA

0x0360-
0x0366

0x03DC-
0x03E2

0x0458-
0x045E

0x04D4-
0x04DA

0x0550-
0x0556

0x05CC-
0x05D2

PMAC Address $D09A-
$D09B

$D0B9-
$D0BA

$D0D8-
$D0D9

$D0F7-
$D0F8

$D116-
$D117

$D135-
$D136

$D154-
$D155

$D173-
$D174

Source A $0876 $0936 $09F6 $0AB6 $0B76 $0C36 $0CF6 $0DB6
Source B $0896 $0956 $0A16 $0AD6 $0B96 $0C56 $0D16 $0DD6
Source C $0819 $08D9 $0999 $0A59 $0B19 $0BD9 $0C99 $0D59

PMAC Dual-Ported RAM User Manual

Dual-Ported RAM Automatic Functions 19

Coordinate System B-Axis Target Position (User Units) (* Note 1)
Motor/C.S. # 1 2 3 4 5 6 7 8
Host Address 0x0270-

0x0276
0x02EC-
0x02F2

0x0368-
0x036E

0x03E4-
0x03EA

0x0460-
0x0466

0x04DC-
0x04E2

0x0558-
0x055E

0x05D4-
0x05DA

PMAC Address $D09C-
$D09D

$D0BB-
$D0BC

$D0DA-
$D0DB

$D0F9-
$D0FA

$D118-
$D119

$D137-
$D138

$D156-
$D157

$D175-
$D176

Source A $0877 $0937 $09F7 $0AB7 $0B77 $0C37 $0CF7 $0DB7
Source B $0897 $0957 $0A17 $0AD7 $0B97 $0C57 $0D17 $0DD7
Source C $081A $08DA $099A $0A5A $0B1A $0BDA $0C9A $0D5A

Coordinate System C-Axis Target Position (User Units)* Note 1
Motor/C.S. # 1 2 3 4 5 6 7 8
Host Address 0x0278-

0x027E
0x02F4-
0x02FA

0x0370-
0x0376

0x03EC-
0x03F2

0x0468-
0x046E

0x04E4-
0x04EA

0x0560-
0x0566

0x05DC-
0x05E2

PMAC Address $D09E-
$D09F

$D0BD-
$D0BE

$D0DC-
$D0DD

$D0FB-
$D0FC

$D11A-
$D11B

$D139-
$D13A

$D158-
$D159

$D177-
$D178

Source A $0878 $0938 $09F8 $0AB8 $0B78 $0C38 $0CF8 $0DB8
Source B $0898 $0958 $0A18 $0AD8 $0B98 $0C58 $0D18 $0DD8
Source C $081B $08DB $099B $0A5B $0B1B $0BDB $0C9B $0D5B

Coordinate System U-Axis Target Position (User Units) * Note 1
Motor/C.S. # 1 2 3 4 5 6 7 8
Host Address 0x0280-

0x0286
0x02FC-
0x0302

0x0378-
0x037E

0x03F4-
0x03FA

0x0470-
0x0476

0x04EC-
0x04F2

0x0568-
0x056E

0x05E4-
0x05EA

PMAC Address $D0A0-
$D0A1

$D0BF-
$D0C0

$D0DE-
$D0DF

$D0FD-
$D0FE

$D11C-
$D11D

$D13B-
$D13C

$D15A-
$D15B

$D179-
$D17A

Source A $0879 $0939 $09F9 $0AB9 $0B79 $0C39 $0CF9 $0DB9
Source B $0899 $0959 $0A19 $0AD9 $0B99 $0C59 $0D19 $0DD9
Source C $081C $08DC $099C $0A5C $0B1C $0BDC $0C9C $0D5C

Coordinate System V-Axis Target Position (User Units) * Note 1
Motor/C.S. # 1 2 3 4 5 6 7 8
Host Address 0x0288-

0x028E
0x0304-
0x030A

0x0380-
0x0386

0x03FC-
0x0402

0x0478-
0x047E

0x04F4-
0x04FA

0x0570-
0x0576

0x05EC-
0x05F2

PMAC Address $D0A2-
$D0A3

$D0C1-
$D0C2

$D0E0-
$D0E1

$D0FF-
$D100

$D11E-
$D11F

$D13D-
$D13E

$D15C-
$D15D

$D17B-
$D17C

Source A $087A $093A $09FA $0ABA $0B7A $0C3A $0CFA $0DBA
Source B $089A $095A $0A1A $0ADA $0B9A $0C5A $0D1A $0DDA
Source C $081D $08DD $099D $0A5D $0B1D $0BDD $0C9D $0D5D

Coordinate System W-Axis Target Position (User Units) * Note 1
Motor/C.S. # 1 2 3 4 5 6 7 8
Host Address 0x0290-

0x0296
0x030C-
0x0312

0x0388-
0x038E

0x0404-
0x040A

0x0480-
0x0486

0x04FC-
0x0502

0x0578-
0x057E

0x05F4-
0x05FA

PMAC Address $D0A4-
$D0A5

$D0C3-
$D0C4

$D0E2-
$D0E3

$D101-
$D102

$D120-
$D121

$D13F-
$D140

$D15E-
$D15F

$D17D-
$D17E

Source A $087B $093B $09FB $0ABB $0B7B $0C3B $0CFB $0DBB
Source B $089B $095B $0A1B $0ADB $0B9B $0C5B $0D1B $0DDB
Source C $081E $08DE $099E $0A5E $0B1E $0BDE $0C9E $0D5E

 PMAC Dual-Ported RAM User Manual

20 Dual-Ported RAM Automatic Functions

Coordinate System X-Axis Target Position (User Units) * Note 1
Motor/C.S. # 1 2 3 4 5 6 7 8
Host Address 0x0298-

0x029E
0x0314-
0x031A

0x0390-
0x0396

0x040C-
0x0412

0x0488-
0x048E

0x0504-
0x050A

0x0580-
0x0586

0x05FC-
0x0602

PMAC Address $D0A6-
$D0A7

$D0C5-
$D0C6

$D0E4-
$D0E5

$D103-
$D104

$D122-
$D123

$D141-
$D142

$D160-
$D161

$D17F-
$D180

Source A $087C $093C $09FC $0ABC $0B7C $0C3C $0CFC $0DBC
Source B $089C $095C $0A1C $0ADC $0B9C $0C5C $0D1C $0DDC
Source C $081F $08DF $099F $0A5F $0B1F $0BDF $0C9F $0D5F

Coordinate System Y-Axis Target Position (User Units) * Note 1
Motor/C.S. # 1 2 3 4 5 6 7 8

Host Address 0x02A0-
0x02A6

0x031C-
0x0322

0x0398-
0x039E

0x0414-
0x041A

0x0490-
0x0496

0x050C-
0x0512

0x0588-
0x058E

0x0604-
0x060A

PMAC Address $D0A8-
$D0A9

$D0C7-
$D0C8

$D0E6-
$D0E7

$D105-
$D106

$D124-
$D125

$D143-
$D144

$D162-
$D163

$D181-
$D182

Source A $087D $093D $09FD $0ABD $0B7D $0C3D $0CFD $0DBD
Source B $089D $095D $0A1D $0ADD $0B9D $0C5D $0D1D $0DDD
Source C $0820 $08E0 $09A0 $0A60 $0B20 $0BE0 $0CA0 $0D60

Coordinate System Z-Axis Target Position (User Units) * Note 1
Motor/C.S. # 1 2 3 4 5 6 7 8
Host Address 0x02A8-

0x02AE
0x0324-
0x032A

0x03A0-
0x03A6

0x041C-
0x0422

0x0498-
0x049E

0x0514-
0x051A

0x0590-
0x0596

0x060C-
0x0612

PMAC Address $D0AA-
$D0AB

$D0C9-
$D0CA

$D0E8-
$D0E9

$D107-
$D108

$D126-
$D127

$D145-
$D146

$D164-
$D165

$D183-
$D184

Source A $087E $093E $09FE $0ABE $0B7E $0C3E $0CFE $0DBE
Source B $089E $095E $0A1E $0ADE $0B9E $0C5E $0D1E $0DDE
Source C $0821 $08E1 $09A1 $0A61 $0B21 $0BE1 $0CA1 $0D61

Coordinate System Program Execution Status (32 bits; low 24 bits used)
(Second word returned on ?? command)

Motor/C.S. # 1 2 3 4 5 6 7 8
Host Address 0x02B0-

0x02B2
0x032C-
0x032E

0x03A8-
0x03AA

0x0424-
0x0426

0x04A0-
0x04A2

0x051C-
0x051E

0x0598-
0x059A

0x0614-
0x0616

PMAC Address $D0AC $D0CB $D0EA $D109 $D128 $D147 $D166 $D185
Source Address Y:$0817 Y:$08D7 Y:$0997 Y:$0A57 Y:$0B17 Y:$0BD7 Y:$0C97 Y:$0D57

Coordinate System Program Lines Remaining (32 bits)
(Same value as PR command returns)

Motor/C.S. # 1 2 3 4 5 6 7 8
Host Address 0x02B4-

0x02B6
0x0330-
0x0332

0x03AC-
0x03AE

0x0428-
0x042A

0x04A4-
0x04A6

0x0520-
0x0522

0x059C-
0x059E

0x0618-
0x061A

PMAC Address $D0AD $D0CC $D0EB $D10A $D129 $D148 $D167 $D186
Source Address Y:$08AE Y:$096E Y:$0A2E Y$0AEE Y$0BAE Y:$0C6E Y:$0D2E Y$0DEE

PMAC Dual-Ported RAM User Manual

Dual-Ported RAM Automatic Functions 21

Coordinate System Time Remaining in move when I13 > 0 (2*msec)
Motor/C.S. # 1 2 3 4 5 6 7 8
Host Address 0x02B8-

0x02BA
0x0334-
0x0336

0x03B0-
0x03B2

0x042C-
0x042E

0x04A8-
0x04AA

0x0524-
0x0526

0x05A0-
0x05A2

0x061C-
0x061E

PMAC Address $D0AE $D0CD $D0EC $D10B $D12A $D149 $D168 $D187
Source Address X:$0020 X:$005C X:$0098 X:$00D4 X:$0110 X:$014C X:$0188 X:$01C4

Coordinate System Time Remaining in accel/decel when I13 > 0 (2*msec)
Motor/C.S. # 1 2 3 4 5 6 7 8
Host Address 0x02BC-

0x02BE
0x0338-
0x033A

0x03B4-
0x03B6

0x0430-
0x0432

0x04AC-
0x04AE

0x0528-
0x052A

0x05A4-
0x05A6

0x0620-
0x0622

PMAC Address $D0AF $D0CE $D0ED $D10C $D12B $D14A $D169 $D188

Coordinate System Program Execution Address Offset
(Same value as PE command returns)

Motor/C.S. # 1 2 3 4 5 6 7 8
Host Address 0x02C0-

0x02C2
0x033C-
0x033E

0x03B8-
0x03BA

0x0434-
0x0436

0x04B0-
0x04B2

0x052C-
0x052E

0x05A8-
0x05AA

0x0624-
0x0626

PMAC Address $D0B0 $D0CF $D0EE $D10D $D12C $D14B $D16A $D189

Motor Averaged Actual Velocity (1/[Ix09*32] counts per servo cycle)
Motor/C.S. # 1 2 3 4 5 6 7 8

Host Address 0x02C4-
0x02C6

0x0340
0x0342

0x03BC-
0x03BE

0x0438-
0x043A

0x04B4-
0x04B6

0x0530-
0x0532

0x05AC-
0x05AE

0x0628-
0x062A

PMAC Address $D0B1 $D0D0 $D0EF $D10E $D12D $D14C $D16B $D18A
Source Address Y:$082A Y:$08EA Y$09AA Y$0A6A Y$0B2A Y$0BEA Y$0CAA Y$0D6A

* Note 1: The following is the logic used in the PMAC to determine which variable will be put in this slot.
It is controlled by bits of the coordinate system program execution status word (PSTATUS):
If (PSTATUS.7 == 1 && PSTATUS.5 == 0)
 Use Source A
Else
 If (PSTATUS.9 == 1)
 Use Source B
 Else
 Use Source C
 Endif
Endif

PSTATUS.7 is the Segmented move flag (I13 != 0)
PSTATUS.5 is the Segmented move stop flag
PSTATUS.9 is the Tool Compensation flag

Background Variable Data Read Buffer
The Background Variable Data Read Buffer allows the user to have up to 128 user-specified PMAC
registers copied into DPRAM during the background cycle. This function is controlled by I55. The buffer
has two modes of operation, single user and multi-user. The default mode is the single user mode. It is
active when bit 8 of the control word (Y:$D1FA) is set to zero. Multi-user mode is active when bit 8 of
the control word (Y:$D1FA) is set to one.

 PMAC Dual-Ported RAM User Manual

22 Dual-Ported RAM Automatic Functions

General Description
The buffer has three parts. The first part is the header: four 16-bit words (eight host addresses) containing
handshake information and defining the location and size of the rest of the table. This is at a fixed location
in DPRAM (see table at end of section). The second part contains the address specifications of the PMAC
registers to be copied into DPRAM. It occupies two 16-bit words (four host addresses) for each PMAC
location to be copied, starting at the location specified in the header. The third part, starting immediately
after the end of the second part, contains the copied information from the PMAC registers. It contains two
16-bit words (four host addresses) for each short (X or Y) PMAC location copied, and four 16-bit words
(eight host addresses) for each long PMAC location copied. The data format is the same as for data
gathering to dual-ported RAM.

Enabling
To start operation of this buffer:
1. Write the starting location of the second part of the buffer into register 0x07EE (X:$D1FB). This

location is expressed as a PMAC address, and it must be between $D200 and $DFFF.
2. Starting at the DPRAM location specified in the above step, write the PMAC addresses of the

registers to be copied, and the register types. The first 16-bit word is the PMAC address of the first
register to be copied; the second 16-bit word takes a value of 0, 1, 2, or 4 to specify Y, Long, X, or
Special respectively, for the first register. The third and fourth word specifies the address and type of
the second register to be copied, and so on.

3. Write a number representing the size of the buffer into register 0x07EC. (Y:$D1FB). This value must
be between 1 and 128. When PMAC sees that this value is greater than zero and the individual data
ready bit is zero, it is ready to start copying the registers you have specified into DPRAM.

4. To enable the single user mode write a zero into the control word at 0x07E8 (Y:$D1FA). To enable
the multi-user mode write a 256 (set bit 8 and clear bit 0) into the control word at 0x07E8 (Y:$D1FA)
and set bit 15 = 0 of each variable's data type register (X memory register). This will tell PMAC that
the host is ready to receive data and what the mode is for the data.

5. Set I55 to 1. This enables both the background variable data reporting function and the background
variable data writing function.

Single User Mode Procedure
In operation, PMAC will try to copy data into the buffer each background cycle – between each scan of
each PLC program. If bit 0 of the control word 0x07E8 is set to 1, it will assume that the host has not
finished reading the data from the last cycle, so it will skip this cycle. If bit 0 is 0, it will copy all of the
specified registers.

When PMAC is done copying the specified registers, it copies 16 bits of the servo timer register (X:$0000)
into the DPRAM at 0x07EA (X:$D1FA). Then it sets Bit 0 of the control word 0x07E8 (Y:$D1FA) to let
the host know that it has completed a cycle.

When the host wants to read this data, it should check to see that Bit 0 of the control word 0x07E8 (the
Data Ready bit) has been set. If it has, the host can begin reading and processing the data in the DPRAM.
When it is done, it should clear the Data Ready bit to let PMAC know that it can perform another cycle.

Multi-User Mode Procedure
The operation of this mode is very similar to the Single User Mode described above. The main difference
is that the control word is no longer used as a global handshaking bit for updating the buffer. It enables or
disables the multi-user mode only. In multi-user mode the control word is never modified by PMAC.
Handshaking is now on an individual variable basis and is controlled by bit 15 of the variable's data type
specifier.

PMAC Dual-Ported RAM User Manual

Dual-Ported RAM Automatic Functions 23

Each background cycle, between each scan of each PLC program, PMAC will try to copy data into each
variable in the buffer. Bit 15 of each variable’s data type specifier controls whether or not PMAC is
allowed to update that particular variable’s value. PMAC will skip updating any variable that has bit of its
data type specifier set to 1. Any variable that has bit 15 set to 0 will be updated.

When PMAC is done servicing the buffer, it copies 16 bits of the servo timer register (X:$0000) into the
DPRAM at 0x07EA (X:$D1FA). This is not dependent upon updating any variables in the buffer.

When the host wants to read a register, it should check to see that Bit 15 of the data type specifier (the
Data Ready bit) has been set. If it has, the host can begin reading and processing the data from that
register. When it is done, it should clear the Data Ready bit to let PMAC know that it can update that
register the next cycle.

Data Format
Each 24-bit (X or Y) register is sign-extended to 32 bits. For a 48-bit (Long) register, each 24-bit half is
sign-extended to 32 bits, for a total of 64 bits in the DPRAM. This data starts immediately after the last
address specification register.

Disabling
To disable this function, you can set the size register 0x07EC (Y:$D1FB) to 0, or simply leave the
individual Data Ready bits set.

Register Map
Background Variable Data Buffer -- PMAC to Host Transfer

Address Description
0x07E8
(Y:$D1FA)

PMAC to HOST (Bit 0 = 1 for single user mode) Data Ready.
PMAC done updating buffer - Host must clear for more data.

0x07EA
X:$D1FA

Servo Timer (Updated at Data Ready Time)

0x07EC
(Y:$D1FB)

Size of Address Buffer (measured in long integers of 32 bits each)

0x07EE
(X:$D1FB)

Start of Address Buffer (Ex. $D400; must be $D200 to $DFFD)

Variable Address Buffer Format (2x16-bit words)
X:Mem Bits 15: Data

Ready (multi-user mode)
X:Mem Bits 0 - 2:

Variable type to read
Y:Mem

Variable address
Dual Port

Data Length
1 = PMAC data ready
0 = Host request data

0 = PMAC Var. Y:Mem. PMAC Address of Variable 32 bits

1 = PMAC data ready
0 = Host request data

1 = PMAC Var. Long PMAC Address of Variable 64 bits

1 = PMAC data ready
0 = Host request data

2 = PMAC Var. X:Mem. PMAC Address of Variable 32 bits

1 = PMAC data ready
0 = Host request data

4 = Special (Firmware 1.16)
PLCC Function Block

PLCC Function Block
Number. Y:$9FFF has the
base address of the function
blocks.

64 bits

 PMAC Dual-Ported RAM User Manual

24 Dual-Ported RAM Automatic Functions

Background Variable Data Write Buffer
The Background Variable Data Write Buffer is essentially the opposite of the Background Variable Data
Read Buffer described above. It allows the user to write to up to 32 user-specified registers or particular
bits in registers to PMAC without using a communications port (PC Bus, serial, or DPRAM ASCII I/O).
This allows the user to set any PMAC variable without using an ASCII command such as M1=1 and
without worrying about an open Rotary Buffer.

This function is controlled by I55. It is available starting with firmware version 1.15G. PLCC function
blocks are available starting with firmware version 1.16.

General Description
The buffer has two parts. The first part is the header: two 16-bit words (four host addresses) containing
handshake information and defining the location and size of the rest of the table. This is at a fixed location
in DPRAM (PMAC address $D1F5 as shown in the table at the end of this section). The second part
contains the address specifications of the PMAC registers to be copied into PMAC. It occupies six 16-bit
words (twelve host addresses) for each PMAC location to be written to, starting at the location specified in
the header.

Enabling
To start operation of this buffer:
1. Write the starting location of the second part of the buffer into register 0x07E8 (X:$D1F5). This

location is expressed as a PMAC address, and it must be between $D200 and $DFFD.
2. Starting at the DPRAM location specified in the above step, write the PMAC addresses of the

registers to be copied, and the register types. The first 16-bit word is the PMAC address of the first
register to be copied; the second 16-bit word takes a value of 0 to 32768 to specify the type, width,
and offset for writing to the PMAC register. The third, fourth, fifth, and sixth words specify the data
to be written.

Note:

If address 0 is specified, it will be writing into PMAC’s servo clock register and
will cause PMAC’s watchdog timer to trip.

3. Write a number representing the size of the buffer into register 0x07E6. (Y:$D1F5). This value must
be between 1 and 32. When PMAC sees that this value is greater than zero, it is ready to start
copying the registers you have specified into PMAC. When it is finished it will change the value in
this register to a 0.

4. Set I55 to 1. This enables both the background variable data read function and the background
variable data write function.

Procedure
In operation, PMAC will copy the data from the buffer into PMAC during the background cycle whenever
Y:$D1F5 is a not zero. If this register is 0 it will assume that the host has not finished placing the data in
the buffer and will not write to PMAC. Once this register is set to a number from 1 to 32 it will copy that
many registers, starting at the start of the header start address information, from the DPRAM to PMAC.

When PMAC is done copying the specified registers, it sets register Y:$D1F5 to zero to let the host know
that it has completed a cycle.

When the host wants to update this buffer, it should check to see that Y:$D1F5 is zero. When it is done, it
should setup the address/data structure. Then set Y:$D1F5 to the number of registers to copy to PMAC to
let PMAC know that it can perform another cycle.

PMAC Dual-Ported RAM User Manual

Dual-Ported RAM Automatic Functions 25

Data Format
PMAC X, Y, and Special registers will use the long 32-bit data 1word. The 32-bit Data 2 word is not used
in this case. For PLCC function blocks, only X (bits 0-2 = 6) or Y (bits 0-2 = 4) memory writes are
allowed.

For a 48-bit PMAC integer or float point value, The L (Long) format should be used. L will have the
lower 32 bits of the total 48 bits in the long 32-bit data 1 word and the upper 16 bits in the lower 32-bit
data 2 word. PCOMM.LIB supplies a function to convert this IEEE 64-bit number to a PMAC 48-bit
floating-point number. This data starts immediately after the last address specification register.

Disabling
To disable this function, simply leave Y:$D1F5 set to zero.

Register Map
Background Variable Data Write Buffer -- Host to PMAC Transfer

Address Description
0x07E6

(Y:$D1F5)
HOST to PMAC Data Transferred. PMAC is updated when cleared.
Host must set for another update.

0x07E8
X:$D1F5

Starting address of data structure ($D200 - $DFFD).

Variable Address Buffer Format for each Data Structure (6x16-bit)
DPRAM
Address

X:Mem Y:Mem X:Mem
Bit Definitions

$D200 Bits 13 - 15: Special type PMAC address 0 = PLCC Function Block
1-7 = Reserved for future use

to
$DFFD

Bits 8 - 12: Offset PMAC address Offset = 0..23. -- This is the
starting offset for the read.

 Bits 3 - 7: Width PMAC address Width = 0, 1, 4, 8, 12, 16, 20 -- 0
is a 24-bit width.

 Bits 0 - 2: Variable type
to write

PLCC Function Block
Number

0 = Y register
1 = L register
2 = X register
4 = Special Y register
6 = Special X register

 Upper 16-bits of data 1 Lower 16-bits of data 1 Data to send to PMAC
 Upper 16-bits of data 2 Lower 16-bits of data 2 Data to send to PMAC

DPRAM Data Gathering Buffer
PMAC’s data gathering function can create a rotary buffer in DPRAM, so that the host computer can pick
up the data as it is being gathered. This function was implemented before V1.14, and is described in the
User's Manual for PMAC.

The data-gathering buffer in DPRAM must start at address 0x0800 ($D200). Its length is determined by
the DEFINE GATHER {size} command. If also using a DPRAM Background Variable Data Buffer,
and/or a DPRAM Binary Rotary Program Buffer, it is important to set the starting points and sizes of those
buffers so there is no overlap.

 PMAC Dual-Ported RAM User Manual

26 Dual-Ported RAM Automatic Functions

Note:

If the {size} requested in the DEFINE GATHER {size} command is smaller
than required to hold an even multiple of the requested data, the actual data storage
will go beyond the requested {size} to the next higher multiple of memory words
required to hold the data. For example, if gathering one 24-bit value and one 48-bit
value, three words of memory is needed. If the {size} specified is 4000 words
(not a multiple of 3), the actual storage size will be 4002 words (the next higher
multiple of 3).

PMAC to Host Transfer (memory locations set by PMAC)
Address Description

0x07FC (Y:$D1FF) Data Gather Buffer Size.
0x07FC (X:$D1FF) PMAC Data Gather Buffer Storage Address. If I45 = 2 and the

buffer's end has been reached (this index is greater than or equal to
the size), the DEFINE GATHER command must be issued again to
allow gathering to restart.

0x0800 ($D200) Start of Data Gather Buffer (not changeable).

The data format for the Data Gathering to the Dual Port Format is that 24-bit values are sign-extended to
32-bits. 48-bit values are treated as 2 24-bit values: each half is sign-extended to 32 bits, for a total of 64
bits. The data is provided in Intel format, with the low address containing the least significant word.

The variables that control the Data Gathering are as follows: I19 determines the rate at which this buffer is
updated by the PMAC in units of servo cycles. I20 to I44 to determine what data (PMAC addresses) is to
be gathered. I45 determines if the data will be stored in PMAC's main memory or the DPRAM.

On-line commands GATHER and ENDGATHER enable and disable the Data Gathering. These commands
do not affect the Background data-reporting buffer but could affect the Servo fixed data reporting function.
If the GATHER command is issued with I48=0, the data gathering function will start. If the GATHER
command is issued with I48=1, the servo fixed data reporting function will start instead of the data
gathering function.

It is possible to execute both the servo fixed data reporting function and the data gathering function
simultaneously. After setting I48 to 1, the first GATHER command activates the servo fixed data reporting
function described earlier. The next GATHER command will activate the data gathering function. The
ENDGATHER command stops the function started by the most recent GATHER command. If both functions
are running, two ENDGATHER commands must be issued to stop them both.
To enable this function:
1. Set I19 = update period (in servo cycles).
2. Set I45 = data storage location and mode (2 or 3).
3. Issue a DEFINE GATHER {size} (Determine buffer size).
4. Issue GATHER command (if I48=1 issue GATHER GATHER command).
To disable this function:
1. Issue ENDGATHER command, or
2. Set I19 = 0.

PMAC Dual-Ported RAM User Manual

Dual-Ported RAM Automatic Functions 27

DPRAM ASCII Communications
PMAC can perform ASCII communications through the dual-ported RAM, as well as through the normal
bus communications port and the serial port. The DPRAM ASCII communications is enabled by setting
I58 to 1. This permits the host to send an ASCII command to PMAC by placing the command string
characters in consecutive registers in the DPRAM and setting a flag to notify PMAC of the command.
PMAC will respond by placing its response string characters in consecutive registers in the DPRAM, then
setting a flag, and optionally triggering an interrupt to notify the host of the response.

General Description
Setting I58 to 1 enables the ASCII I/O feature. When this mode is enabled, the following I-variables are
automatically set to the following values:
I3 = 2 or 0 ;Handshake control (PROM 1.15x: 3 changed to 2; 1
 ;changed to 0, ;PROM 1.14x: Always set to 2)
I4 = 0 ;Checksum control
I6 = 1 ;Error reporting control

These variables should be changed subsequent to setting I58 to 1.

Once the DPRAM ASCII communication is enabled, PMAC is ready to receive ASCII commands either
through the normal bus port or through the DPRAM port. The active response port is whichever port
through which PMAC has received the most recent command. Therefore, PMAC will respond to a host
command through the port where it received the command. Communications resulting from internal SEND
or CMD statements in PMAC programs will be sent to the active response port.

When sending and receiving ASCII strings through the DPRAM, the handshake control characters are not
part of the strings, as they are on the other ports. Instead, they are placed in fixed control word registers.

To make the serial port the active response port, it is necessary to send the <CTRL-Z> command through
the serial port. This will disable the DPRAM ASCII communications by setting I58 to 0.

Setting I58=0 will disable the ASCII communications -- PMAC will not accept any commands through the
DPRAM. If you have been communicating through the DPRAM, it is a good idea also to send <CTRL-
X> command to clear any pending responses.

Note:

With I58=1, sending a <CTRL-X> command will empty the command and
response queues; it will also clear the control words 0x06D0 (Y:$D1B4) and
0x062C (Y:$D18B).

Read/Write Procedure
To initialize the buffer:
1. Clear registers 0x062C (Y:$D1B4) and 0x06D0 (Y:$D18B) Bit 0.
2. Set I58 = 1
To send a command line:
1. Put ASCII characters in Host-to-PMAC buffer 0x0630-0x06CE ($D18C - $D1B3) with a NULL

character to terminate the string
2. Set Host-Output Control Flag 0x062C (Y:$D18B) Bit 0 to 1 (Host-Output Complete)

Note:

When sending ASCII command strings through the DPRAM, it is not necessary to
use a carriage-return character. PMAC looks for the NULL character (ASCII value
0) to mark the end of the string, and looks at the Host-Output Control Flag to know
when it has been given a command.

 PMAC Dual-Ported RAM User Manual

28 Dual-Ported RAM Automatic Functions

The buffer in DPRAM is limited to 159 characters; however, a command line of up to 200 characters can
be sent by using the DPRAM buffer twice. The first 159 characters are placed in DPRAM without a
terminating NULL character and the host-output-complete flag is set; then the remaining up to 41
characters are sent with a NULL character to terminate, and the host-output-complete flag is set again
To read a response:
1. Wait for Host-Input Control Word 0x06D0 (Y:$D1B4) > 0 (Response Ready)
2. Interpret the value in this register to determine what type of response is present. If the register does

not show an error, continue with the following steps.
3. Read 0x06D2 (X:$D1B4) to find the number of characters in the response.
4. Read the Host-Input Buffer starting at 0x06D4 ($D1B5) until the specified number of characters has

been read.
5. Clear the Host-Input Control Word 0x06D0 (Y:$D1B4).
6. Repeat steps 1 to 5 until the Host-Input Control Word contains an <ACK> to mark the end of

transmission.
PROM version 1.15 provides a register in the DPRAM, 0x062E (X:$D18B) to be used specifically for
sending PMAC a control character. The read/write procedure is exactly as described above except now
instead of writing a string to the Host-to PMAC buffer, write the ASCII value of the control character to
the dedicated register 0x062E (X:$D18B).

Note:

PMAC’s ASCII response strings in DPRAM do not end with a carriage-return
character. The host computer has two ways of knowing where the end of the string
is. First, the register immediately preceding the string is given the number of
characters in the string – convenient for Pascal programmers. Second, the string is
terminated with the NULL character (ASCII value 0) – convenient for C
programmers.

Interrupts
I56 = 1 enables the Dual-Ported RAM ASCII interrupt feature. With this enabled, the PMAC will
interrupt the Host when a PMAC-to-Host buffer is ready to be read by the Host.

VME users will get the normal VME bus communications interrupt (IRQ line specified by the value in
X:$788) with an interrupt vector (default $A2) one greater than the value specified in X:$789 when the
Dual Port RAM ASCII PMAC to HOST data buffer is ready. The non-DPRAM (mailbox) VME interrupt
vectors remain as before ($A0 and $A1 default).

PC users will get IR7 interrupt from the PMAC PC or PMAC Lite if jumper E55 is installed. The EQU4
signal is used to generate this interrupt, so it is unavailable for position-compare use when I56 = 1. Due to
the fact that the 8259 does not latch the interrupt on a transition interrupt, the PMAC will hold the IR7 line
true until the host services the Dual Port ASCII PMAC-to-Host buffer and sets 0x06D0 (Y:$D1B4) to 0
(saying it has the data).

Because of this the host may see an IR7 interrupt still active when it gets another interrupt. If so, the
PMAC has not overwritten the PMAC-to-Host ASCII buffer; it just has not satisfied the above described
condition. Also if 0x06D0 (Y:$D1B4) = 0, the IR7 was from the previous exchange and there is no data to
be received by the Host. The last transmission should be an <ACK> regardless of whether you have I56
equal to one or zero.

PMAC Dual-Ported RAM User Manual

Dual-Ported RAM Automatic Functions 29

Register Map

ASCII Host-to-PMAC Transfer
Address Description
0x062C

(Y:$D18B)
ASCII Host-Output Control Word
Bit 0: Host-Output-Control Flag
 = 0: Host Output Enable. Set to 0 by PMAC when it has processed a command string.
 = 1: Host Output Complete. Set to 1 by the Host when it has loaded a full command
string.
Bits 1-15: (Reserved for future use)

0x062E
(X:$D18B)

Bits 0-7: (Host-Output) Control character to be sent to PMAC

0x0630-
0x06CE
($D18C-
$D1B3)

Host-to-PMAC (Host-Output) Transfer Buffer -- Up to 159 characters with a NULL
character (ASCII value 0) terminating the string.

ASCII PMAC-to-Host Transfer
Address Description
0x06D0

(Y:$D1B4)
ASCII Host-Input Control Word (PMAC termination character)
Upper/Lower 8 of 16 bits(shown as hex digits):
00/00: PMAC Output Enable: Set to this value by HOST, to note that it has processed the
previous response data. PMAC will not update the Host Input buffer unless this control
word is zero.
00/0D: (<CR>) Set to this value by PMAC after it has filled the Host-Input buffer, to
note that there is more data to follow in transmission
01/0D: (<CR>) Set to this value by PMAC after it has filled the Host-Input buffer, to
note a PMAC program "CMD" command response - End of transmission; no ACK is sent
02/0D: (<CR>) Set to this value by PMAC after it has filled the Host-Input buffer, to
note a PMAC program "SEND" command message - End of transmission; No ACK is
sent
8d/dd: Set to this value by PMAC to note an error in the command; where "ddd" = 12-bit
BCD-coded Error Number (See I6 description for error listing)

0x06D2
(X:$D1B4)

(# of ASCII characters + 1) in the Host-Input buffer; set by PMAC after it has written to
the buffer

0x06D4-
0x07D2
($D1B5-
D1F4)

PMAC-to-Host (Host-Input) Transfer Buffer --Up to 255 characters with a NULL
character (ASCII value 0) terminating the string.

There are two ASCII character bytes per 16-bit register in DPRAM. The first character of the pair is in the
LSB. This format should be convenient for host computers with Intel processors, but probably will require
a byte swap for host computers with Motorola processors.

Binary Rotary Program Buffers
The Binary Rotary Program Buffers in PMAC’s DPRAM allows the host computer to send program
commands to PMAC in binary format for the fastest possible transmission of these commands. A standard
rotary program buffer must be established in PMAC's internal memory with the DEFINE ROTARY
command, as well as a buffer in DPRAM for the binary transmission from the host. Only the first of two
binary rotary buffers that PMAC supports in DPRAM is described here. Call or fax Delta Tau if the
details (memory register address/description) for the second one are required.

 PMAC Dual-Ported RAM User Manual

30 Dual-Ported RAM Automatic Functions

When PMAC receives a binary-format program command in DPRAM from the host, it simply copies it
into the rotary program buffer in internal memory. The end result is the same as if an ASCII program
command had been sent to PMAC through any of the ports, but the transmission is quicker because PMAC
gets the command all at once, and it does not have to parse the command from ASCII format.

Note:

Delta Tau has PC subroutines written in C to interface with the DPRAM binary
rotary program buffer. Contact the factory for details.

General Description
The host defines the start and size of the Binary Rotary Buffer in 0x07F8 and 0x07FA (Y: and X:$D1FE),
sets the Host and PMAC indexes at 0x07F4 and 0x07F6 (Y: and X:$D1FD) to zero the beginning of the
buffer, fills the rotary buffer with data, sets the host index to the end of the buffer then enable the Binary
Rotary buffer transfer by setting I57 = 1. The host can use the PMAC Indexes to determine when to
update the Dual Port buffer or the BREQ interrupt will be active on the internal Rotary buffer also.

Rules:
1. The data in the buffer must contain a complete line. Therefore the line must be in the buffer before

the Host Binary Rotary Buffer Index is updated.
2. The buffer size parameter is subject to the following restrictions:

a. Minimum Size = six words (24 bytes) which means it could have only one command per line.
b. The size must be an even number (6,8,12 etc.) so that no 64-bit instruction command will wrap in

the buffer.
3. Host Buffer Full when PMAC_Index = (Host_Index+4)% buffer_size
4. Host Buffer Empty when PMAC_Index = Host_Index
5. In the DPRAM rotary buffer at the Host_Index a special end of buffer command needs to be stored

after each transfer. It is the following:
 DPRotBuf(Host_Index) = $800
 DPRotBuf(Host_Index) + 1 = $FFFF

Note:

These values are Intel format.

6. Not all motion program commands can be sent through the binary rotary program buffer. First, any
command that cannot be sent to a rotary buffer through an ASCII command string cannot be sent in
binary form (e.g. IF, WHILE, GOTO, GOSUB). Second, the binary command syntax does not support
mathematical expressions. Any place that the ASCII command syntax description uses the form
{data} or {expression}, the binary command must use the form {constant} instead.

PMAC Dual-Ported RAM User Manual

Dual-Ported RAM Automatic Functions 31

Register Map
HOST to PMAC Transfer

Address Description
0x07F0

(Y:$D1FC)
PMAC to HOST Binary Rotary Buffer Status Word
Bit 15 = 1 :Error (Stops processing commands)
Bit14 = 1 :Internal Rotary buffer full (Busy flag) PMAC Index stops updating.
Bits 7-0 = Code Error
 ------ ------------------------------------
 1 Internal Rotary Buffer size = 0
 or DPRAM Rotary Buffer Size = 0
These flags are set and reset by the PMAC. The Busy flag is set when the PMAC internal
rotary buffer is full.
This however does not mean the DPRAM Binary Rotary buffer is full (See Rules). The
Busy flag is reset when the PMAC internal rotary buffer is not full or the DPR binary
rotary buffer is empty.

0x07F2
(X:$D1FC)

Spare

0x07F4
(Y:$D1FD)

Host Binary Rotary Buffer Index (for 32 bits)

0x07F6
(X:$D1FD)

PMAC Binary Rotary Buffer Index (for 32 bits)

0x07F8
(Y:$D1FE)

Size of Binary Rotary Buffer (in long integers - 32 bits)

0x07FA
(X:$D1FE)

Starting Binary Rotary Buffer PMAC Address (Ex. $D600, must be >= $D200)

??? Binary Rotary Buffer (Host to ensure that does not conflict with Data Gather Buffer)

Binary Command Structure
The first, second, and third 16-bit words contain the 48 bits of data for the internal 48-bit PMAC command
format. The fourth word of the 64-bit dual port rotary buffer format is not used in the transfer and is
reserved for future use.

Allowed Rotary Buffer Commands
CMD Type Description

0 Single letter, CALL, DWELL with floating point data
1 Commands with integer or mask type data
2 In=, Mn=, Pn=, Qn=, Mn|=, Mn^=, Mn&=, Mn==

Command Type = 0
Code 1 Code 2 PMAC Command
1 - 26 - A through Z letter commands with floating point

data; 14 & 15 = N & O are not used here
27 - CALL
28 0 TA
28 1 TS
28 2 PVT
28 67 TM
28 68 DWELL
28 69 DELAY
28 70 :
28 71 ^
28 72 CCR

 PMAC Dual-Ported RAM User Manual

32 Dual-Ported RAM Automatic Functions

Command Type = 1
Code 1 Code 2 PMAC Command

30 0/1 ENABLE / DISABLE PLC
30 0/1/2 ABS / INC / FRAX
30 3 HOME
30 4 Not Available
30 5 Not Available
30 6 HOMEZ

30 0 CIRn
30 1 LINEAR
30 2 NORM
30 3 PSET
30 4 SPLINEn
30 5 STOP
30 6 BSTART
30 7 BSTOP
30 8 WAIT (Not Implemented)
30 9 RAPID
30 10 CCn
30 11 TSELn
30 12 ADISn
30 13 AROTn
30 14 IDISn
30 15 IROTn
30 16 TINIT

Command Type = 2
Code 1 Code 2 PMAC Command

14 0 In={constant} (n = 0 to 1023)
14 1 Mn={constant} (n = 0 to 1023)
14 2 Pn={constant} (n = 0 to 1023)
14 3 Qn={constant} (n = 0 to 1023)
15 0 Mn|={constant} (n = 0 to 1023)
15 1 Mn&={constant} (n = 0 to 1023)
15 2 Mn^={constant} (n = 0 to 1023)
15 3 Mn=={constant} (n = 0 to 1023)

Internal PMAC 48-Bit Command Format
This section details the internal structure of the permitted binary commands. It is for reference for those
designing their own subroutines to create these commands. Contact the Delta Tau factory for pre-written
subroutines that create these commands.

PMAC Dual-Ported RAM User Manual

Dual-Ported RAM Automatic Functions 33

Command Type = 0
Sub-type A: A thru Z and CALL

(24-Bit Word 1)
--
23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
FLOAT MANTISSA (36 BITS)	1	CODE1 = 1-27	EXPONENT(6 BIT)																				
^ 1,3 ... = A, B ... & 27 = CALL																							
* Note 1																							
--- Start of line bit																							

(24-Bit Word 2)
--
23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
 S| FRACTIONAL PART OF FLOAT MANTISSA (36 BITS)
 ^-- SIGN

Sub-type B: TA, TS, PVT, TM, DWELL, DELAY, :,^ CCR
(24-Bit Word 1)
--
23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
 CODE2 | Not Used | 1| CODE1 = 28 | EXPONENT(6 BIT) |
 0,1,2 = TA,TS,PVT ^
 67,68,69 = TM,DWELL,DELAY |---Start of line bit
 70,71,72 = :, ^, CCR

 (24-Bit Word 2)
--
23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
 S| FRACTIONAL PART OF FLOAT MANTISSA (24 BITS)
 ^-- SIGN

*** Note 1: Code1 14 and 15 normally letters N and O are not available for use and are used for 14 =

'In=','Mn=','Pn=','Qn=' commands and 15 = 'Mn|=','Mn^=','Mn&=','Mn==' commands.

Command Type = 1
Sub-type A: ENABLE/DISABLE PLC

(24-Bit Word 1)
--
23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
7 6 5 4 3 2 1 0 | N. U |^ |1 | CODE1 = 30 | 1 = ENA/DIS
 PLC # | ^
 | |--- Start of line bit
 |-- CODE2 - 0/1 = ENA/DIS PLC

 (24-Bit Word 2)
--
23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
 PLC #

 PMAC Dual-Ported RAM User Manual

34 Dual-Ported RAM Automatic Functions

Sub-type B: ABS/INC
(24-Bit Word 1)
--
23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
Not Used | ^ | N. U. | 1| CODE1 = 30 | 2 = FRAX/ABS/INC
 0 = ABS ^
 CODE2 - 1 = INC |---Start of line bit

(24-Bit Word 2)
--
23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
Z Y X W V U C B A R
 ABS/INC AXIS (Set bit = 1)

Sub-type C: FRAX
(24-Bit Word 1)
--
23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
Not Used | ^ | N. U. | 1| CODE1 = 30 | 2 = FRAX/ABS/INC
 CODE2 2 = FRAX ^
 |---Start of line bit

(24-Bit Word 2)
--
23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
Z Y X W V U C B A
 FRAX AXIS (Set bit = 1)

Sub-type D: HOME & HOMEZ
 (24-Bit Word 1)

23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
 Not Used | 1| CODE1 = 30 | CODE2 3,6 =
 HOME,HOMEZ
 ^ 4,5 = Not Used
 |---Start of line bit

(24-Bit Word 2)
--
23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
 8 7 6 5 4 3 2 1
 MOTOR # (Set bit = 1)

Sub-type E: CIRn, SPLINEn, CCn, TSELn, ADISn, AROTn, IDISn, IROTn
(24-Bit Word 1)
--
23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
CODE2	N. U.	1	CODE1 = 30	0																			
 ^ ^
 | |---Start of line bit
 |
 CODE2 0,4,10,11,12,13,14,15 = CIRn,SPLINEn,CCn,TSELn,ADISn,AROTn
 IDISn,IROTn

PMAC Dual-Ported RAM User Manual

Dual-Ported RAM Automatic Functions 35

(24-Bit Word 2)
--
23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
S | "n" = Integer number value = 1 - 1023 & value of 1024 = 0
^-- SIGN (Two's complement)

Sub-type F: LINEAR, NORM, PSET, STOP, BSTART, BSTOP, WAIT, RAPID, TINIT
(24-Bit Word 1)
--
23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
CODE2	N. U.	1	CODE1 = 30	0																			
 ^ ^
 | |---Start of line bit
 |
 CODE2 1,2,3,5,6, = LINEAR, NORM, PSET, STOP, BSTART,
 7,8,9,16 = BSTOP, WAIT, RAPID, TINIT

 (24-Bit Word 2)
--
23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
0 | 0 = No DATA

Command Type = 2
Sub-type A: In=, Mn=, Pn=, Qn=
(24-Bit Word 1)
--
23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
Integer "n"= 0 - 1023	CODE2	1	CODE1 = 14	EXPONENT(6 BIT)																			
 ^ ^
 | |---Start of line bit
 |
 CODE2 0 = In, 1 = Mn, 2 = Pn, 3 = Qn

 (24-Bit Word 2)
--
23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
 S| FRACTIONAL PART OF FLOAT MANTISSA (24 BITS)
 ^-- SIGN

Sub-type B: Mn|=, Mn^=, Mn&=, Mn==
(24-Bit Word 1)
--
23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
Integer "n"= 0 - 1023	CODE2	1	CODE1 = 15	EXPONENT(6 BIT)																			
 ^ ^
 | |---Start of line bit
 |
 CODE2 0 = Mn|=, 1 = Mn^=, 2 = Mn&=, 3 = Mn==

(24-Bit Word 2)
--
23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
 S| FRACTIONAL PART OF FLOAT MANTISSA (24 BITS)
 ^-- SIGN

	Software Setup
	System Memory Map (Most Compatible)
	Starting Address
	Starting Address
	General Description
	Register Addresses
	Control Panel Request Words
	Bit Format of Request Words
	General Description
	Register Map
	Motor-Specific Registers for Servo Fixed Data Reporting Buffer:

	General Description
	Register Map
	Motor/Coordinate System Specific Registers for Background Fixed Data Buffer

	General Description
	Enabling
	Single User Mode Procedure
	Multi-User Mode Procedure
	Data Format
	Disabling
	Register Map
	General Description
	Enabling
	Procedure
	Data Format
	Disabling
	Register Map
	General Description
	Read/Write Procedure
	Interrupts
	Register Map
	General Description
	Register Map
	Binary Command Structure
	Internal PMAC 48-Bit Command Format
	Command Type = 0
	Command Type = 1
	Command Type = 2

